vapply and tapply

In the last lesson, you learned about the two most fundamental members of R’s *apply family of functions: lapply() and sapply(). Both take a list as input, apply a function to each element of the list, then combine and return the result. lapply() always returns a list, whereas sapply() attempts to simplify the result.

In this lesson, you’ll learn how to use vapply() and tapply(), each of which serves a very specific purpose within the Split-Apply-Combine methodology. For consistency, we’ll use the same dataset we used in the ‘lapply and sapply’ lesson.

The Flags dataset from the UCI Machine Learning Repository contains details of various nations and their flags. More information may be found here: http://archive.ics.uci.edu/ml/datasets/Flags

I’ve stored the data in a variable called flags. If it’s been a while since you completed the ‘lapply and sapply’ lesson, you may want to reacquaint yourself with the data by using functions like dim(), head(), str(), and summary() when you return to the prompt (>). You can also type viewinfo() at the prompt to bring up some documentation for the dataset. Let’s get started!

As you saw in the last lesson, the unique() function returns a vector of the unique values contained in the object passed to it. Therefore, sapply(flags, unique) returns a list containing one vector of unique values for each column of the flags dataset. Try it again now.

sapply(flags, unique)
## $name
##   [1] Afghanistan              Albania                 
##   [3] Algeria                  American-Samoa          
##   [5] Andorra                  Angola                  
##   [7] Anguilla                 Antigua-Barbuda         
##   [9] Argentina                Argentine               
##  [11] Australia                Austria                 
##  [13] Bahamas                  Bahrain                 
##  [15] Bangladesh               Barbados                
##  [17] Belgium                  Belize                  
##  [19] Benin                    Bermuda                 
##  [21] Bhutan                   Bolivia                 
##  [23] Botswana                 Brazil                  
##  [25] British-Virgin-Isles     Brunei                  
##  [27] Bulgaria                 Burkina                 
##  [29] Burma                    Burundi                 
##  [31] Cameroon                 Canada                  
##  [33] Cape-Verde-Islands       Cayman-Islands          
##  [35] Central-African-Republic Chad                    
##  [37] Chile                    China                   
##  [39] Colombia                 Comorro-Islands         
##  [41] Congo                    Cook-Islands            
##  [43] Costa-Rica               Cuba                    
##  [45] Cyprus                   Czechoslovakia          
##  [47] Denmark                  Djibouti                
##  [49] Dominica                 Dominican-Republic      
##  [51] Ecuador                  Egypt                   
##  [53] El-Salvador              Equatorial-Guinea       
##  [55] Ethiopia                 Faeroes                 
##  [57] Falklands-Malvinas       Fiji                    
##  [59] Finland                  France                  
##  [61] French-Guiana            French-Polynesia        
##  [63] Gabon                    Gambia                  
##  [65] Germany-DDR              Germany-FRG             
##  [67] Ghana                    Gibraltar               
##  [69] Greece                   Greenland               
##  [71] Grenada                  Guam                    
##  [73] Guatemala                Guinea                  
##  [75] Guinea-Bissau            Guyana                  
##  [77] Haiti                    Honduras                
##  [79] Hong-Kong                Hungary                 
##  [81] Iceland                  India                   
##  [83] Indonesia                Iran                    
##  [85] Iraq                     Ireland                 
##  [87] Israel                   Italy                   
##  [89] Ivory-Coast              Jamaica                 
##  [91] Japan                    Jordan                  
##  [93] Kampuchea                Kenya                   
##  [95] Kiribati                 Kuwait                  
##  [97] Laos                     Lebanon                 
##  [99] Lesotho                  Liberia                 
## [101] Libya                    Liechtenstein           
## [103] Luxembourg               Malagasy                
## [105] Malawi                   Malaysia                
## [107] Maldive-Islands          Mali                    
## [109] Malta                    Marianas                
## [111] Mauritania               Mauritius               
## [113] Mexico                   Micronesia              
## [115] Monaco                   Mongolia                
## [117] Montserrat               Morocco                 
## [119] Mozambique               Nauru                   
## [121] Nepal                    Netherlands             
## [123] Netherlands-Antilles     New-Zealand             
## [125] Nicaragua                Niger                   
## [127] Nigeria                  Niue                    
## [129] North-Korea              North-Yemen             
## [131] Norway                   Oman                    
## [133] Pakistan                 Panama                  
## [135] Papua-New-Guinea         Parguay                 
## [137] Peru                     Philippines             
## [139] Poland                   Portugal                
## [141] Puerto-Rico              Qatar                   
## [143] Romania                  Rwanda                  
## [145] San-Marino               Sao-Tome                
## [147] Saudi-Arabia             Senegal                 
## [149] Seychelles               Sierra-Leone            
## [151] Singapore                Soloman-Islands         
## [153] Somalia                  South-Africa            
## [155] South-Korea              South-Yemen             
## [157] Spain                    Sri-Lanka               
## [159] St-Helena                St-Kitts-Nevis          
## [161] St-Lucia                 St-Vincent              
## [163] Sudan                    Surinam                 
## [165] Swaziland                Sweden                  
## [167] Switzerland              Syria                   
## [169] Taiwan                   Tanzania                
## [171] Thailand                 Togo                    
## [173] Tonga                    Trinidad-Tobago         
## [175] Tunisia                  Turkey                  
## [177] Turks-Cocos-Islands      Tuvalu                  
## [179] UAE                      Uganda                  
## [181] UK                       Uruguay                 
## [183] US-Virgin-Isles          USA                     
## [185] USSR                     Vanuatu                 
## [187] Vatican-City             Venezuela               
## [189] Vietnam                  Western-Samoa           
## [191] Yugoslavia               Zaire                   
## [193] Zambia                   Zimbabwe                
## 194 Levels: Afghanistan Albania Algeria American-Samoa Andorra ... Zimbabwe
## 
## $landmass
## [1] 5 3 4 6 1 2
## 
## $zone
## [1] 1 3 2 4
## 
## $area
##   [1]   648    29  2388     0  1247  2777  7690    84    19     1   143
##  [12]    31    23   113    47  1099   600  8512     6   111   274   678
##  [23]    28   474  9976     4   623  1284   757  9561  1139     2   342
##  [34]    51   115     9   128    43    22    49   284  1001    21  1222
##  [45]    12    18   337   547    91   268    10   108   249   239   132
##  [56]  2176   109   246    36   215   112    93   103  3268  1904  1648
##  [67]   435    70   301   323    11   372    98   181   583   236    30
##  [78]  1760     3   587   118   333  1240  1031  1973  1566   447   783
##  [89]   140    41  1267   925   121   195   324   212   804    76   463
## [100]   407  1285   300   313    92   237    26  2150   196    72   637
## [111]  1221    99   288   505    66  2506    63    17   450   185   945
## [122]   514    57     5   164   781   245   178  9363 22402    15   912
## [133]   256   905   753   391
## 
## $population
##  [1]   16    3   20    0    7   28   15    8   90   10    1    6  119    9
## [15]   35    4   24    2   11 1008    5   47   31   54   17   61   14  684
## [29]  157   39   57  118   13   77   12   56   18   84   48   36   22   29
## [43]   38   49   45  231  274   60
## 
## $language
##  [1] 10  6  8  1  2  4  3  5  7  9
## 
## $religion
## [1] 2 6 1 0 5 3 4 7
## 
## $bars
## [1] 0 2 3 1 5
## 
## $stripes
##  [1]  3  0  2  1  5  9 11 14  4  6 13  7
## 
## $colours
## [1] 5 3 2 8 6 4 7 1
## 
## $red
## [1] 1 0
## 
## $green
## [1] 1 0
## 
## $blue
## [1] 0 1
## 
## $gold
## [1] 1 0
## 
## $white
## [1] 1 0
## 
## $black
## [1] 1 0
## 
## $orange
## [1] 0 1
## 
## $mainhue
## [1] green  red    blue   gold   white  orange black  brown 
## Levels: black blue brown gold green orange red white
## 
## $circles
## [1] 0 1 4 2
## 
## $crosses
## [1] 0 1 2
## 
## $saltires
## [1] 0 1
## 
## $quarters
## [1] 0 1 4
## 
## $sunstars
##  [1]  1  0  6 22 14  3  4  5 15 10  7  2  9 50
## 
## $crescent
## [1] 0 1
## 
## $triangle
## [1] 0 1
## 
## $icon
## [1] 1 0
## 
## $animate
## [1] 0 1
## 
## $text
## [1] 0 1
## 
## $topleft
## [1] black  red    green  blue   white  orange gold  
## Levels: black blue gold green orange red white
## 
## $botright
## [1] green  red    white  black  blue   gold   orange brown 
## Levels: black blue brown gold green orange red white

What if you had forgotten how unique() works and mistakenly thought it returns the number of unique values contained in the object passed to it? Then you might have incorrectly expected sapply(flags, unique) to return a numeric vector, since each element of the list returned would contain a single number and sapply() could then simplify the result to a vector.

When working interactively (at the prompt), this is not much of a problem, since you see the result immediately and will quickly recognize your mistake. However, when working non-interactively (e.g. writing your own functions), a misunderstanding may go undetected and cause incorrect results later on. Therefore, you may wish to be more careful and that’s where vapply() is useful.

Whereas sapply() tries to ‘guess’ the correct format of the result, vapply() allows you to specify it explicitly. If the result doesn’t match the format you specify, vapply() will throw an error, causing the operation to stop. This can prevent significant problems in your code that might be caused by getting unexpected return values from sapply().

Try vapply(flags, unique, numeric(1)), which says that you expect each element of the result to be a numeric vector of length 1. Since this is NOT actually the case, YOU WILL GET AN ERROR. Once you get the error, type ok() to continue to the next question.

ok()

Recall from the previous lesson that sapply(flags, class) will return a character vector containing the class of each column in the dataset. Try that again now to see the result.

sapply(flags, class)
##       name   landmass       zone       area population   language 
##   "factor"  "integer"  "integer"  "integer"  "integer"  "integer" 
##   religion       bars    stripes    colours        red      green 
##  "integer"  "integer"  "integer"  "integer"  "integer"  "integer" 
##       blue       gold      white      black     orange    mainhue 
##  "integer"  "integer"  "integer"  "integer"  "integer"   "factor" 
##    circles    crosses   saltires   quarters   sunstars   crescent 
##  "integer"  "integer"  "integer"  "integer"  "integer"  "integer" 
##   triangle       icon    animate       text    topleft   botright 
##  "integer"  "integer"  "integer"  "integer"   "factor"   "factor"

If we wish to be explicit about the format of the result we expect, we can use vapply(flags, class, character(1)). The ‘character(1)’ argument tells R that we expect the class function to return a character vector of length 1 when applied to EACH column of the flags dataset. Try it now.

vapply(flags, class, character(1))
##       name   landmass       zone       area population   language 
##   "factor"  "integer"  "integer"  "integer"  "integer"  "integer" 
##   religion       bars    stripes    colours        red      green 
##  "integer"  "integer"  "integer"  "integer"  "integer"  "integer" 
##       blue       gold      white      black     orange    mainhue 
##  "integer"  "integer"  "integer"  "integer"  "integer"   "factor" 
##    circles    crosses   saltires   quarters   sunstars   crescent 
##  "integer"  "integer"  "integer"  "integer"  "integer"  "integer" 
##   triangle       icon    animate       text    topleft   botright 
##  "integer"  "integer"  "integer"  "integer"   "factor"   "factor"

Note that since our expectation was correct (i.e. character(1)), the vapply() result is identical to the sapply() result – a character vector of column classes.

You might think of vapply() as being ‘safer’ than sapply(), since it requires you to specify the format of the output in advance, instead of just allowing R to ‘guess’ what you wanted. In addition, vapply() may perform faster than sapply() for large datasets. However, when doing data analysis interactively (at the prompt), sapply() saves you some typing and will often be good enough.

As a data analyst, you’ll often wish to split your data up into groups based on the value of some variable, then apply a function to the members of each group. The next function we’ll look at, tapply(), does exactly that.

Use ?tapply to pull up the documentation.

?tapply

The ‘landmass’ variable in our dataset takes on integer values between 1 and 6, each of which represents a different part of the world. Use table(flags$landmass) to see how many flags/countries fall into each group.

table(flags$landmass)
## 
##  1  2  3  4  5  6 
## 31 17 35 52 39 20

The ‘animate’ variable in our dataset takes the value 1 if a country’s flag contains an animate image (e.g. an eagle, a tree, a human hand) and 0 otherwise. Use table(flags$animate) to see how many flags contain an animate image.

table(flags$animate)
## 
##   0   1 
## 155  39

This tells us that 39 flags contain an animate object (animate = 1) and 155 do not (animate = 0).

If you take the arithmetic mean of a bunch of 0s and 1s, you get the proportion of 1s. Use tapply(flags\(animate, flags\)landmass, mean) to apply the mean function to the ‘animate’ variable separately for each of the six landmass groups, thus giving us the proportion of flags containing an animate image WITHIN each landmass group.

tapply(flags$animate, flags$landmass, mean)
##         1         2         3         4         5         6 
## 0.4193548 0.1764706 0.1142857 0.1346154 0.1538462 0.3000000

The first landmass group (landmass = 1) corresponds to North America and contains the highest proportion of flags with an animate image (0.4194).

Similarly, we can look at a summary of population values (in round millions) for countries with and without the color red on their flag with tapply(flags\(population, flags\)red, summary).

tapply(flags$population, flags$red, summary)
## $`0`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    3.00   27.63    9.00  684.00 
## 
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     4.0    22.1    15.0  1008.0

What is the median population (in millions) for countries without the color red on their flag?

  1. 9.0
  2. 4.0
  3. 27.6
  4. 3.0
  5. 22.1
  6. 0.0

3

Lastly, use the same approach to look at a summary of population values for each of the six landmasses.

tapply(flags$population, flags$landmass, summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   12.29    4.50  231.00 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    1.00    6.00   15.71   15.00  119.00 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    8.00   13.86   16.00   61.00 
## 
## $`4`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   5.000   8.788   9.750  56.000 
## 
## $`5`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    2.00   10.00   69.18   39.00 1008.00 
## 
## $`6`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   11.30    1.25  157.00

What is the maximum population (in millions) for the fourth landmass group (Africa)?

  1. 56.00
  2. 1010.0
  3. 119.0
  4. 5.00
  5. 157.00

56

In this lesson, you learned how to use vapply() as a safer alternative to sapply(), which is most helpful when writing your own functions. You also learned how to use tapply() to split your data into groups based on the value of some variable, then apply a function to each group. These functions will come in handy on your quest to become a better data analyst.

OK. Enough! Please submit the log of this lesson to Google Forms so that Simon may evaluate your progress.

  1. Sure thing!

Sure thing!